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1. Introduction

Ever since the analytic solution for tachyon condensation in open bosonic string field the-

ory [1] was constructed by Schnabl [2], new analytic technologies have been developed [3 –

15], and analytic solutions for marginal deformations were recently constructed [16, 17].1

We believe that we are now in a new phase of research on open string field theory.2

Extension of these new technologies to closed string field theory, however, does not

seem straightforward. The star product [1] used in open string field theory has a simpler

description in the conformal field theory (CFT) formulation when we use a coordinate

called the sliver frame which was originally introduced in [37]. It has been an important

ingredient in recent developments. Closed bosonic string field theory [38 – 43] and heterotic

string field theory [44, 45], however, use infinitely many non-associative string products,

and we have not found any coordinate where simple descriptions of these string products

are possible.

On the other hand, extension to open superstring field theory formulated by

Berkovits [46] is promising because the string product used in the theory is the same

as that in open bosonic string field theory. In this paper we construct analytic solutions

for marginal deformations in open superstring field theory.

We first review the solutions for marginal deformations in open bosonic string field

theory. The solutions take the form of an expansion in terms of the deformation parameter

λ, and analytic expressions to all order in λ have been derived when operator products made

1For earlier study of marginal deformations in string field theory and related work, see [18 – 32].
2See [33 – 36] for reviews.
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of the marginal operator are regular [16, 17]. When the operator product of the marginal

operator with itself is singular, solutions were constructed to O(λ3) by regularizing the

singularity and by adding counterterms [17].

The goal of this paper is to construct analytic solutions in open superstring field theory

when operator products made of the marginal operator and the associated superconformal

primary field of dimension 1/2 are regular. It will be a starting point for constructing

analytic solutions when these operators have singular operator products. We first simplify

the equation of motion for open superstring field theory by field redefinition. We then

make an ansatz motivated by the structure of the solutions in the bosonic case and solve

the equation of motion analytically. The solutions in the superstring case turn out to be

remarkably simple and similar to those in the bosonic case. The final section of the paper

is devoted to conclusions and discussion.

We learned that T. Erler independently found analytic solutions for marginal defor-

mations in open superstring field theory [47] prior to our construction.

2. Solutions in open bosonic string field theory

In this section, we review the analytic solutions for marginal deformations constructed

in [16, 17] for the open bosonic string. The equation of motion for open bosonic string field

theory [1] is given by

QBΨ + Ψ2 = 0 , (2.1)

where Ψ is the open string field and QB is the BRST operator. All the string products in

this paper are defined by the star product [1]. The open bosonic string field Ψ has ghost

number 1 and is Grassmann odd. The BRST operator is Grassmann odd and is nilpotent:

Q2
B = 0 . It is a derivation with respect to the star product:

QB (ϕ1 ϕ2) = (QBϕ1)ϕ2 + (−1)ϕ1 ϕ1 (QB ϕ2) (2.2)

for any states ϕ1 and ϕ2, where (−1)ϕ1 = 1 when ϕ1 is Grassmann even and (−1)ϕ1 = −1

when ϕ1 is Grassmann odd.

The deformation of the boundary CFT for the open string by a matter primary field

V of dimension 1 is marginal to linear order in the deformation parameter. When the

deformation is exactly marginal, we expect a solution of the form

Ψλ =

∞
∑

n=1

λn Ψ(n) , (2.3)

where λ is the deformation parameter, to the nonlinear equation of motion (2.1). When

operator products made of V are regular, analytic expressions of Ψ(n)’s were derived in [16,

17], and the BPZ inner product 〈ϕ,Ψ(n) 〉 for a state ϕ in the Fock space is given by

〈ϕ,Ψ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 〈 f ◦ ϕ(0) cV (1)B cV (1 + t1)B cV (1 + t1 + t2) . . .

×B cV (1 + t1 + t2 + · · · + tn−1) 〉W1+t1+t2+···+tn−1
. (2.4)
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We follow the notation used in [3, 10, 17]. In particular, see the beginning of section 2

of [3] for the relation to the notation used in [2]. Here and in what follows we use ϕ to

denote a generic state in the Fock space and ϕ(0) to denote its corresponding operator

in the state-operator mapping. We use the doubling trick in calculating CFT correlation

functions. As in [10], we define the oriented straight lines V ±
α by

V ±
α =

{

z
∣

∣

∣
Re(z) = ±

1

2
(1 + α)

}

,

orientation : ±
1

2
(1 + α) − i∞ → ±

1

2
(1 + α) + i∞ ,

(2.5)

and the surface Wα can be represented as the region between V −
0 and V +

2α, where V −
0 and

V +
2α are identified by translation. The function f(z) is

f(z) =
2

π
arctan z , (2.6)

and f ◦ϕ(z) denotes the conformal transformation of ϕ(z) by the map f(z). The operator

B is defined by

B =

∫

dz

2πi
b(z) , (2.7)

and when B is located between two operators at t1 and t2 with 1/2 < t1 < t2, the contour

of the integral can be taken to be −V +
α with 2 t1 − 1 < α < 2 t2 − 1. The anticommutation

relation of B and c(z) is

{B, c(z)} = 1 , (2.8)

and B2 = 0.

The solution can be written more compactly as

〈ϕ,Ψ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

〈

f ◦ ϕ(0)

n−2
∏

i=0

[

cV (1 + ℓi)B
]

cV (1 + ℓn−1)
〉

W1+ℓn−1

,

(2.9)

where

ℓ0 = 0 , ℓi ≡
i

∑

k=1

tk for i = 1 , 2 , 3 , . . . . (2.10)

It can be further simplified as

Ψλ =
1

1 − λXb Jb
λXb , (2.11)

where
1

1 − λXb Jb
≡ 1 +

∞
∑

n=1

(λXb Jb )n . (2.12)

The state Xb is the same as Ψ(1):

〈ϕ,Xb 〉 = 〈 f ◦ ϕ(0) cV (1) 〉W1
. (2.13)
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It solves the linearized equation of motion: QBXb = 0. The definition of Jb is a little

involved. It is defined when it appears as ϕ1 Jb ϕ2 between two states ϕ1 and ϕ2 in the

Fock space. The string product ϕ1 Jb ϕ2 is given by

〈ϕ, ϕ1 Jb ϕ2 〉 =

∫ 1

0
dt 〈 f ◦ ϕ(0) f1 ◦ ϕ1(0)B f1+t ◦ ϕ2(0) 〉W1+t

, (2.14)

where ϕ1(0) and ϕ2(0) are the operators corresponding to the states ϕ1 and ϕ2, respectively.

The map fa(z) is a combination of f(z) and translation:

fa(z) =
2

π
arctan z + a . (2.15)

The string product ϕ1 Jb ϕ2 is well defined if f1 ◦ϕ1(0)B f1+t ◦ϕ2(0) is regular in the limit

t → 0 . In the definition of Ψλ, Jb always appears between two Xb’s. Since c(1)B c(1+ t) =

c(1) in the limit t → 0 , the ghost part of Xb Jb Xb is finite.3 Therefore, Xb Jb Xb is well

defined if the operator product V (1)V (1 + t) is regular in the limit t → 0 . The ghost part

of the state Ψ(n) = (Xb Jb)
n−1Xb is also finite because B c(z)B = B and c(1)B c(1+ℓn−1) =

c(1) in the limit ℓn−1 → 0 . Therefore, Ψ(n) is well defined if the operator product in the

matter sector
∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

n−1
∏

i=0

[

V (1 + ℓi)
]

(2.16)

is finite. For example, the marginal deformation associated with the rolling tachyon and

the deformations in the light-cone directions satisfy the regularity condition [16, 17].

An important property of Jb is

ϕ1 (QBJb)ϕ2 = ϕ1 ϕ2 (2.17)

when f1 ◦ ϕ1(0) f1+t ◦ ϕ2(0) vanishes in the limit t → 0 . Since the BRST transformation

of b(z) is the energy-momentum tensor T (z), the inner product 〈ϕ, ϕ1 (QBJb)ϕ2 〉 is given

by

〈ϕ, ϕ1 (QBJb)ϕ2 〉 =

∫ 1

0
dt 〈 f ◦ ϕ(0) f1 ◦ ϕ1(0)L f1+t ◦ ϕ2(0) 〉W1+t

, (2.18)

where

L =

∫

dz

2πi
T (z) , (2.19)

and the contour of the integral is the same as that of B. As discussed in [3], an insertion

of L is equivalent to taking a derivative with respect to t. It is analogous to the relation

L0 e−tL0 = − ∂t e−tL0 in the standard strip coordinates, where L0 is the zero mode of the

energy-momentum tensor. We thus have

〈ϕ, ϕ1 (QBJb)ϕ2 〉 =

∫ 1

0
dt ∂t 〈 f ◦ ϕ(0) f1 ◦ ϕ1(0) f1+t ◦ ϕ2(0) 〉W1+t

= 〈 f ◦ ϕ(0) f1 ◦ ϕ1(0) f2 ◦ ϕ2(0) 〉W2

(2.20)

3Note that fa ◦ cV (0) = cV (a) because cV is a primary field of dimension 0.
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when f1 ◦ϕ1(0) f1+t ◦ϕ2(0) vanishes in the limit t → 0 . This completes the proof of (2.17).

When ϕ1 = ϕ2 = Xb, the operator product cV (1) cV (1 + t) vanishes in the limit t → 0 if

V (1)V (1 + t) is regular in the limit t → 0 . In the language of [17], ϕ1 Jb ϕ2 is

ϕ1 Jb ϕ2 =

∫ 1

0
dt ϕ1 e−(t−1)L+

L (−B+
L )ϕ2 , (2.21)

and the relation (2.17) follows from {QB , B+
L } = L+

L .

To summarize, when operator products made of V are regular, the solution (2.11) is

well defined, and we can safely use the relations

QBXb = 0 , QBJb = 1 (2.22)

for the Grassmann-odd states Xb and Jb when we calculate the BRST transformation of

Ψλ. It is now straightforward to calculate QBΨλ, and the result is

QBΨλ = −
1

1 − λXb Jb
λXb

1

1 − λXb Jb
λXb . (2.23)

We have thus shown that Ψλ in (2.11) satisfies the equation of motion (2.1).

3. Equation of motion for open superstring field theory

The equation of motion for open superstring field theory [46] is

η0 ( e−Φ QB eΦ ) = 0 , (3.1)

where Φ is the open superstring field. It is Grassmann even and has ghost number 0 and

picture number 0. The superghost sector is described by η, ξ, and φ [48, 49], and the zero

modes of η and ξ are included in the Hilbert space. The operator η0 is the zero mode of η

and a derivation with respect to the star product. For any states ϕ1 and ϕ2, we have

η0 (ϕ1 ϕ2) = (η0 ϕ1)ϕ2 + (−1)ϕ1 ϕ1 (η0 ϕ2) , (3.2)

as in the case of QB, where (−1)ϕ1 = 1 when ϕ1 is Grassmann even and (−1)ϕ1 = −1 when

ϕ1 is Grassmann odd. The Grassmann-odd operator η0 is nilpotent and anticommutes with

QB :

Q2
B = 0 , η2

0 = 0 , {QB , η0} = 0 . (3.3)

Since η0 ( e−Φ QB eΦ ) = e−Φ [QB ( eΦ η0 e−Φ ) ] eΦ , the equation of motion can also be

written as follows:

QB ( eΦ η0 e−Φ ) = 0 . (3.4)

We further simplify the equation of motion by field redefinition. Since the open superstring

field Φ has vanishing ghost and picture numbers, there is a natural class of field redefinitions

given by

Φnew =

∞
∑

n=1

anΦn
old , (3.5)
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where an’s are constants. The map from Φold to Φnew is well defined at least perturbatively.

We choose

1 − Φnew = e−Φold , (3.6)

and the equation of motion (3.4) written in terms of Φnew is

− QB

( 1

1 − Φ
η0 Φ

)

= −
1

1 − Φ

[

QB η0 Φ + (QB Φ )
1

1 − Φ
( η0 Φ )

]

= 0 , (3.7)

where
1

1 − Φ
≡ 1 +

∞
∑

n=1

Φn . (3.8)

In the following sections, we solve the equation of motion of the form

QB η0 Φ + (QB Φ )
1

1 − Φ
( η0 Φ ) = 0 , (3.9)

or

QB η0 Φ + (QB Φ ) ( η0 Φ ) +

∞
∑

n=1

(QB Φ )Φn ( η0 Φ ) = 0 . (3.10)

4. Solutions to second order

For any marginal deformation of the boundary CFT for the open superstring, there is an

associated superconformal primary field V1/2 of dimension 1/2, and the marginal operator

V1 of dimension 1 is the supersymmetry transformation of V1/2. For example, V1/2 is the

fermionic coordinate ψµ(z) when V1 is the derivative of the bosonic coordinate i ∂Xµ(z)

up to a normalization constant. In the RNS formalism, the unintegrated vertex operator

in the −1 picture is ce−φV1/2, and the unintegrated vertex operator in the 0 picture is

cV1. In open superstring field theory [46], the solution to the linearized equation of motion

QB η0 Φ(1) = 0 associated with the marginal deformation is given by Φ(1) = X, where X is

the state corresponding to the operator V(0) = c ξe−φV1/2(0):

〈ϕ,X 〉 = 〈 f ◦ ϕ(0)V(1) 〉W1
= 〈 f ◦ ϕ(0) c ξe−φV1/2(1) 〉W1

. (4.1)

See [28] for some explicit calculations in open superstring field theory when V1/2(z) =

ψµ(z) .

When the deformation is exactly marginal, we expect a solution of the form

Φλ =

∞
∑

n=1

λn Φ(n) , (4.2)

where λ is the deformation parameter, to the nonlinear equation of motion (3.9). The

equation for Φ(2) is

QB η0 Φ(2) = − (QB Φ(1)) (η0 Φ(1)) = − (QBX) (η0X) . (4.3)

– 6 –
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The right-hand side is annihilated by QB and by η0 because QBη0X = 0 . In order to solve

the equation for Φ(2), we introduce a state J by replacing b(z) in Jb for the bosonic case

with ξb(z). Since

η0 · ξb(z) ≡

∮

dw

2πi
η(w) ξb(z) = b(z) (4.4)

and the BRST transformation of b(z) gives the energy-momentum tensor, we expect that

ξb(z) in the superstring case plays a similar role of b(z) in the bosonic case. In fact, the zero

mode of ξb(z) divided by L0 was used in the calculation of on-shell four-point amplitudes

in [50]. We again define J when it appears as ϕ1 J ϕ2 between two states ϕ1 and ϕ2 in the

Fock space. The string product ϕ1 J ϕ2 is given by

〈ϕ, ϕ1 J ϕ2 〉 =

∫ 1

0
dt 〈 f ◦ ϕ(0) f1 ◦ ϕ1(0)J f1+t ◦ ϕ2(0) 〉W1+t

, (4.5)

where ϕ1(0) and ϕ2(0) are the operators corresponding to the states ϕ1 and ϕ2, respectively.

The operator J is defined by

J =

∫

dz

2πi
ξb(z) , (4.6)

and when J is located between two operators at t1 and t2 with 1/2 < t1 < t2, the contour

of the integral can be taken to be −V +
α with 2 t1 − 1 < α < 2 t2 − 1. As in the case of Jb,

the string product ϕ1 J ϕ2 is well defined if f1 ◦ ϕ1(0)J f1+t ◦ ϕ2(0) is regular in the limit

t → 0 . We also have an important relation

ϕ1 (QB η0 J )ϕ2 = ϕ1 ϕ2 (4.7)

if f1 ◦ ϕ1(0) f1+t ◦ ϕ2(0) vanishes in the limit t → 0 . The proof of this relation follows

from that of (2.17) after we use (4.4) in calculating η0J . We will discuss these regularity

conditions later and proceed for the moment assuming they are satisfied. Namely, we

assume that states involving J are well defined and that we can use the relations

QBη0X = 0 , QBη0J = 1 (4.8)

for the Grassmann-even states X and J .

Motivated by the structure of the solutions in the bosonic case, we look for a solution

which consists of X J X, QB , and η0 to the equation (4.3) for Φ(2). There are nine possible

states:

(QBη0X)J X = 0 , (QBX) (η0J)X , (QBX)J (η0X) ,

(η0X) (QBJ)X , X (QBη0J)X = X2 , X (QBJ) (η0X) ,

(η0X)J (QBX) , X (η0J) (QBX) , X J (QBη0X) = 0 .

(4.9)
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Two of them vanish and one of them reduces to X2. We then calculate the action of QBη0

on the nonvanishing states:

QBη0 [ (QBX) (η0J)X ] = − (QBX) (η0X) ,

QBη0 [ (QBX)J (η0X) ] = (QBX) (η0X) ,

QBη0 [ (η0X) (QBJ)X ] = − (η0X) (QBX) ,

QBη0 [X (QBη0J)X ] = − (η0X) (QBX) + (QBX) (η0X) ,

QBη0 [X (QBJ) (η0X) ] = − (QBX) (η0X) ,

QBη0 [ (η0X)J (QBX) ] = (η0X) (QBX) ,

QBη0 [X (η0J) (QBX) ] = − (η0X) (QBX) .

(4.10)

We thus find that (QBX) (η0J)X, − (QBX)J (η0X), and X (QBJ) (η0X) solve the equa-

tion (4.3) for Φ(2). We can also take an appropriate linear combination of the seven states,

and different solutions should be related by gauge transformations. We choose

Φ(2) = (QBX) (η0J)X (4.11)

and consider its extension to Φ(n) in the next section.

5. Solutions in open superstring field theory

Remarkably, a simple extension of Φ(2) in (4.11) solves the equation of motion (3.9) to all

orders in λ. A solution is given by

Φ(3) = (QBX) (η0J) (QBX) (η0J)X ,

Φ(4) = (QBX) (η0J) (QBX) (η0J) (QBX) (η0J)X ,

...

Φ(n) = [ (QBX) (η0J) ]n−1 X ,

(5.1)

or

Φλ =
1

1 − λ (QBX) (η0J)
λX , (5.2)

where
1

1 − λ (QBX) (η0J)
≡ 1 +

∞
∑

n=1

[λ (QBX) (η0J) ]n . (5.3)

Let us now show that Φλ given by (5.2) satisfies the equation of motion (3.9). Since

QBX and η0J are annihilated by η0, the state η0 Φλ is given by

η0 Φλ =
1

1 − λ (QBX) (η0J)
λ (η0X) . (5.4)

For the calculation of QB Φλ, we use QB [ (QBX) (η0J) ] = − QBX to find

QB
1

1 − λ (QBX) (η0J)
= −

1

1 − λ (QBX) (η0J)
λ (QBX)

1

1 − λ (QBX) (η0J)
. (5.5)

– 8 –
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The state QB Φλ is given by

QB Φλ = −
1

1 − λ (QBX) (η0J)
λ (QBX)

1

1 − λ (QBX) (η0J)
λX

+
1

1 − λ (QBX) (η0J)
λ (QBX)

=
1

1 − λ (QBX) (η0J)
λ (QBX)

[

1 −
1

1 − λ (QBX) (η0J)
λX

]

.

(5.6)

Note that

(QB Φλ )
1

1 − Φλ
=

1

1 − λ (QBX) (η0J)
λ (QBX) . (5.7)

Finally, QB η0Φλ is given by

QB η0 Φλ = −
1

1 − λ (QBX) (η0J)
λ (QBX)

1

1 − λ (QBX) (η0J)
λ (η0X) . (5.8)

We have thus shown that Φλ given by (5.2) satisfies the equation of motion (3.9).

An explicit expression of Φ(n) in the CFT formulation is given by

〈ϕ,Φ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

〈

f ◦ϕ(0)

n−2
∏

i=0

[

QB ·V(1+ℓi)B
]

V(1+ℓn−1)
〉

W1+ℓn−1

,

(5.9)

where the BRST transformation of V is

QB · V(z) = cV1(z) + ηeφV1/2(z) . (5.10)

Note that J in J has been replaced by B in η0J because of (4.4). The term ηeφV1/2(1+ ℓi)

in QB ·V(1+ℓi) does not contribute when i = 1, 2, . . . , n−2 because B2 = 0 . By repeatedly

using B c(z)B = B, we find

〈ϕ,Φ(n)〉 =

∫

dn−1t
〈

f ◦ ϕ(0)cV1(1)B

n−2
∏

i=1

[

V1(1+ℓi)
]

c ξe−φV1/2(1+ℓn−1)
〉

W1+ℓn−1

+

∫

dn−1t
〈

f ◦ ϕ(0)ηeφV1/2(1)B

n−2
∏

i=1

[

V1(1+ℓi)
]

c ξe−φV1/2(1+ℓn−1)
〉

W1+ℓn−1

,

(5.11)

where we have defined
∫

dn−1t ≡

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 . (5.12)

We can also construct a different solution if we choose Φ(2) to be X (QBJ) (η0X). It

is easy to show that Φλ given by

Φλ = λX
1

1 − λ (QBJ) (η0X)
(5.13)

satisfies the equation of motion (3.9). It is also straightforward to construct analytic

solutions based on star-algebra projectors other than the sliver state using the method

in [10].

– 9 –
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6. Regularity conditions

In the proof that the solution (5.2) satisfies the equation of motion (3.9), we used the

following relations:

(QBX) (QBη0J)X = (QBX)X ,

(QBX) (QBη0J) (QBX) = (QBX) (QBX) ,

(QBX) (QBη0J) (η0X) = (QBX) (η0X) .

(6.1)

Let us study the conditions for these relations to hold. Since

η0 · V(z) = η0 · [ cξe
−φV1/2(z) ] = −ce−φV1/2(z) ,

QB · V(z) = QB · [ cξe−φV1/2(z) ] = cV1(z) + ηeφV1/2(z) ,
(6.2)

and V, QB · V, and η0 · V are all primary fields of dimension 0, the condition for (4.7) gives

lim
w→z

[ cV1(z) + ηeφV1/2(z) ] cξe−φV1/2(w) = 0 ,

lim
w→z

[ cV1(z) + ηeφV1/2(z) ] [ cV1(w) + ηeφV1/2(w) ] = 0 ,

lim
w→z

[ cV1(z) + ηeφV1/2(z) ] ce−φV1/2(w) = 0 .

(6.3)

These are satisfied if the operator products V1(z)V1/2(w) and V1(z)V1(w) are regular in

the limit w → z, and V1/2(z)V1/2(w) vanishes in the limit w → z. The vertex operator

V1/2(z) is Grassmann odd so that the last condition is satisfied if the operator product

V1/2(z)V1/2(w) is not singular. To summarize, the equation of motion is satisfied if the

operator products V1(z)V1/2(w), V1(z)V1(w), and V1/2(z)V1/2(w) are regular in the limit

w → z.

Let us next consider if the solution itself is finite and if any intermediate steps in

the proof are well defined. The expressions can be divergent when two or more operators

collide, but if the states

[ (QBX) (η0J) ]n−1 X , [ (QBX) (η0J) ]n−1 (QBX) , [ (QBX) (η0J) ]n−1 (η0X)

(6.4)

for any positive integer n are finite, the solution and any intermediate steps in the proof

are well defined. An explicit expression of Φ(n) = [ (QBX) (η0J) ]n−1 X has been presented

in (5.11). Expressions of [ (QBX) (η0J) ]n−1 (QBX) and [ (QBX) (η0J) ]n−1 (η0X) can be

obtained from (5.11) by replacing c ξe−φV1/2(1+ℓn−1) with cV1(1+ℓn−1)+ηeφV1/2(1+ℓn−1)

and with −ce−φV1/2(1+ℓn−1) , respectively. The bc ghost sector is finite because c(z)B c(w)

is finite in the limit w → z. The superghost sector is also finite because ηeφ(1) ξe−φ(1+ℓn−1)

and ηeφ(1) ηeφ(1+ ℓn−1) are finite in the limit ℓn−1 → 0. Therefore, all the expressions are
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well defined if the contributions from the matter sector listed below are finite:
∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

n−1
∏

i=0

[

V1(1 + ℓi)
]

,

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 V1/2(1)

n−1
∏

i=1

[

V1(1 + ℓi)
]

,

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

n−2
∏

i=0

[

V1(1 + ℓi)
]

V1/2(1 + ℓn−1) ,

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 V1/2(1)

n−2
∏

i=1

[

V1(1 + ℓi)
]

V1/2(1 + ℓn−1) ,

(6.5)

where ℓi was defined in (2.10). To summarize, if operator products of an arbitrary number

of V1’s and at most two V1/2’s are regular, the solution (5.2) is well defined and satisfies

the equation of motion (3.9).

7. Conclusions and discussion

We have constructed analytic solutions for marginal deformations in open superstring field

theory when operator products made of V1’s and V1/2’s are regular. Our solutions are very

simple and remarkably similar to the solutions in the bosonic case [16, 17]. We expect that

there will be further progress of analytic methods in open superstring field theory.

It would be interesting to study the rolling tachyon in open superstring field theory,

and we expect that marginal deformations associated with the rolling tachyon solutions

satisfy the regularity conditions discussed in the preceding section. However, deformations

we are interested in typically have singular operator products of the marginal operator. In

the bosonic case, solutions to third order in λ have been constructed when the operator

product of the marginal operator is singular [17]. We hope that a procedure similar to the

one developed in the bosonic case will work in the superstring case, and it is important to

carry out the program to all orders in the deformation parameter.

Our choice of Φ(2) in (4.11) was based on a technical reason, and it is not clear if

this gauge choice is physically suitable. In particular, the solution Φλ in (5.2) does not

satisfy the reality condition on the string field. However, it is difficult for us to imagine

that there are two inequivalent solutions generated by a single marginal operator which

coincide to linear order in λ, and we expect that our solution is related to a real one by a

gauge transformation. In fact, we can explicitly confirm this at O(λ2). In order to see this,

it is useful to write the solution in the original definition of the string field by inverting the

field redefinition (3.6):

Φold = − ln ( 1 − Φnew ) =
∞

∑

n=1

1

n
Φn

new . (7.1)

We expand Φold in powers of λ as

Φold =

∞
∑

n=1

λn Φ
(n)
old , (7.2)
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and then Φ
(2)
old is given by

Φ
(2)
old = Φ(2)

new +
1

2
(Φ(1)

new)2 = (QBX) (η0J)X +
1

2
X2 . (7.3)

The string field Φ
(2)
old does not satisfy the reality condition.4 However, there is another

solution which satisfies the reality condition given by

1

2
[ (QBX) (η0J)X + X (η0J) (QBX) ] , (7.4)

and the difference between (7.3) and (7.4) is

(QBX) (η0J)X+
1

2
X2−

1

2
[ (QBX) (η0J)X+X (η0J) (QBX) ] =

1

2
QB [X (η0J)X ] (7.5)

and can be eliminated by a gauge transformation. The open superstring field theory

formulated by Berkovits can also be used to describe the N = 2 string by replacing QB

and η0 with the generators in the N = 2 string [46], but the reality condition on the

string field for the N = 2 string does not seem to be satisfied for Φλ in (5.2) either.5 The

conjugation in [46] seems to map Φλ in (5.2) to Φλ in (5.13). We again expect that our

solution is related to a solution satisfying the reality condition by a gauge transformation.

For example, − (QBX)J (η0X), which is another solution to the equation for Φ(2), seems

to satisfy the reality condition, and the difference between − (QBX)J (η0X) and Φ(2)

in (4.11) is η0 [ (QBX)J X ] and can be eliminated by a gauge transformation generated

by η0. We have also found that (QBX) (QBJ)X (η0J) (η0X), which seems to satisfy the

reality condition, solves the equation for Φ(3) when Φ(2) is − (QBX)J (η0X), but we have

not been able to extend the solution to all orders in λ. We think that there is a good chance

that solutions satisfying the reality condition for the ordinary superstring or for the N = 2

string can be found within our ansatz, and it would be desirable to have their explicit

expressions. On the other hand, we believe that the solution in (5.2) has an advantage

because the actions of QB and η0 on (5.2) are very simple.

It has been expected that the moduli space of D-branes are reproduced by the moduli

space of solutions to open string field theory, and we think that our approach provides a

concrete setup to address this question. We have seen a one-to-one correspondence between

the condition for exact marginality in boundary CFT [51] and the absence of obstruction

in solving the equation of motion for string field theory at O(λ2) in the bosonic case [17].

It would be important to study the correspondence at higher orders and in the superstring

4A string field within our ansatz satisfies the reality condition when it is odd under the conjugation

given by replacing X → −X and by reversing the order of string products. Signs from anticommuting

Grassmann-odd string fields have to be taken care of in reversing the order of string products.
5Our understanding is that the conjugation in [46] is given by replacing X → X, J → −J , QB → η0,

and η0 → QB and by reversing the order of string products, and the string field should be even under

the conjugation. Again signs from anticommuting Grassmann-odd string fields have to be taken care of in

reversing the order of string products. The string field Φnew in (3.6) is real when Φold is real with respect

to this reality condition, while this is not the case for the reality condition for the ordinary superstring

discussed earlier.
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case, and a better understanding of the correspondence might help us complete the program

of constructing solutions when the operator product of the marginal operator is singular.

We hope that further developments in this subject will shed light on more conceptual

issus in string theory such as background independence or the question why the condition

that the β function vanishes in the world-sheet theory gives the equation of motion in the

spacetime theory.

Note added. After the first version of this paper was submitted to arXiv, we found

analytic solutions satisfying the reality condition [52]. We also learned that T. Erler in-

dependently constructed analytic solutions satisfying the reality condition, which were

presented in the second version of [47].
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